

ADVANCED GCE

Further Pure Mathematics 3

4727

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required:

• Scientific or graphical calculator

Monday 24 May 2010 Afternoon

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- This document consists of **4** pages. Any blank pages are indicated.

- 1 The line l_1 passes through the points (0, 0, 10) and (7, 0, 0) and the line l_2 passes through the points (4, 6, 0) and (3, 3, 1). Find the shortest distance between l_1 and l_2 . [7]
- 2 A multiplicative group with identity *e* contains distinct elements *a* and *r*, with the properties $r^6 = e$ and $ar = r^5 a$.
 - (i) Prove that rar = a. [2]
 - (ii) Prove, by induction or otherwise, that $r^n a r^n = a$ for all positive integers *n*. [4]
- 3 In this question, w denotes the complex number $\cos \frac{2}{5}\pi + i \sin \frac{2}{5}\pi$.
 - (i) Express w^2 , w^3 and w^* in polar form, with arguments in the interval $0 \le \theta < 2\pi$. [4]
 - (ii) The points in an Argand diagram which represent the numbers

1,
$$1 + w$$
, $1 + w + w^2$, $1 + w + w^2 + w^3$, $1 + w + w^2 + w^3 + w^4$

are denoted by A, B, C, D, E respectively. Sketch the Argand diagram to show these points and join them in the order stated. (Your diagram need not be exactly to scale, but it should show the important features.) [4]

- (iii) Write down a polynomial equation of degree 5 which is satisfied by *w*. [1]
- 4 (i) Use the substitution y = xz to find the general solution of the differential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} - y = x\cos\left(\frac{y}{x}\right),$$

giving your answer in a form without logarithms. (You may quote an appropriate result given in the List of Formulae (MF1).) [6]

- (ii) Find the solution of the differential equation for which $y = \pi$ when x = 4. [2]
- 5 Convergent infinite series *C* and *S* are defined by

$$C = 1 + \frac{1}{2}\cos\theta + \frac{1}{4}\cos 2\theta + \frac{1}{8}\cos 3\theta + \dots ,$$

$$S = \frac{1}{2}\sin\theta + \frac{1}{4}\sin 2\theta + \frac{1}{8}\sin 3\theta + \dots .$$

(i) Show that
$$C + iS = \frac{2}{2 - e^{i\theta}}$$
. [4]

(ii) Hence show that
$$C = \frac{4 - 2\cos\theta}{5 - 4\cos\theta}$$
, and find a similar expression for S. [4]

6 (i) Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 17y = 17x + 36.$$
 [7]

[2]

[3]

- (ii) Show that, when x is large and positive, the solution approximates to a linear function, and state its equation. [2]
- 7 A line *l* has equation $\mathbf{r} = \begin{pmatrix} -7 \\ -3 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}$. A plane Π passes through the points (1, 3, 5) and (5, 2, 5), and is parallel to *l*.
 - (i) Find an equation of Π , giving your answer in the form $\mathbf{r.n} = p$. [4]
 - (ii) Find the distance between l and Π . [4]
 - (iii) Find an equation of the line which is the reflection of l in Π , giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$. [4]
- 8 A set of matrices *M* is defined by

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \quad C = \begin{pmatrix} \omega^2 & 0 \\ 0 & \omega \end{pmatrix}, \quad D = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad E = \begin{pmatrix} 0 & \omega^2 \\ \omega & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & \omega \\ \omega^2 & 0 \end{pmatrix},$$

where ω and ω^2 are the complex cube roots of 1. It is given that M is a group under matrix multiplication.

- (i) Write down the elements of a subgroup of order 2. [1]
- (ii) Explain why there is no element X of the group, other than A, which satisfies the equation $X^5 = A$.
- (iii) By finding *BE* and *EB*, verify the closure property for the pair of elements *B* and *E*. [4]
- (iv) Find the inverses of *B* and *E*.
- (v) Determine whether the group M is isomorphic to the group N which is defined as the set of numbers {1, 2, 4, 8, 7, 5} under multiplication modulo 9. Justify your answer clearly. [3]

1	Direction of $l_1 = k[7, 0, -10]$ Direction of $l_2 = k[1, 3, -1]$	B1	For both directions
	<i>EITHER</i> $\mathbf{n} = [7, 0, -10] \times [1, 3, -1]$	M1	For finding vector product of directions of
	$OR \begin{cases} [x, y, z] \cdot [7, 0, -10] = 0 \implies 7x - 10z = 0 \\ [x, y, z] \cdot [1, 3, -1] = 0 \implies x + 3y - z = 0 \end{cases}$		l_1 and l_2 OR for using 2 scalar products and obtaining equations
	\Rightarrow n = k[10, -1, 7]	A1	For correct n
	METHOD 1		
	Vector $(\mathbf{a} - \mathbf{b})$ from l_1 to $l_2 = \pm [4, 6, -10]$ $OR \pm [-4, 3, 1] OR \pm [3, 3, -9] OR \pm [-3, 6, 0]$	B1	For a correct vector
	$ \mathbf{a} - (\mathbf{a} - \mathbf{b}) \cdot \mathbf{n} = 36$	M1*	For finding $(\mathbf{a} - \mathbf{b}) \cdot \mathbf{n}$
	$u = \frac{ \mathbf{n} }{ \mathbf{n} } = \frac{1}{\sqrt{150}}$	M1 (*dep)	For $ \mathbf{n} $ in denominator <i>OR</i> for using $\hat{\mathbf{n}}$
	$d = \frac{6}{5}\sqrt{6} \approx 2.94$	A1 7	For correct distance AEF
	METHOD 2 Planes containing l_1 and l_2 perp. to n	M1*	For finding planes and $p_1 - p_2$ seen
	are $\mathbf{r} \cdot [10, -1, 7] = p_1 = 70, \mathbf{r} \cdot [10, -1, 7] = p_2 = 34$	B1	For $p_1 = 70k$ and $p_2 = 34k$
	$\Rightarrow d = \frac{ 70 - 34 }{\sqrt{150}} = \frac{36}{\sqrt{150}} = \frac{6}{5}\sqrt{6} \approx 2.94$	M1 (*dep)	For $ \mathbf{n} $ in denominator <i>OR</i> for using $\hat{\mathbf{n}}$
		A1	For correct distance AEF
	METHOD 3 $\mathbf{r}_1 = [7\lambda, 0, 10 - 10\lambda] OR [7 + 7\lambda, 0, -10\lambda]$ $\mathbf{r}_2 = [4 + \mu, 6 + 3\mu, -\mu] OR [3 + \mu, 3 + 3\mu, 1 - \mu]$	B1	For correct points on l_1 and l_2 using different parameters
	$7\lambda + 10\alpha - \mu = \begin{vmatrix} 4 & -3 & 3 & -4 \\ -\alpha - 3\mu & = \begin{vmatrix} 6 & 6 & 3 & 3 \\ -10\lambda + 7\alpha + \mu & = \begin{vmatrix} -10 & 0 & -9 & 1 \end{vmatrix}$	M1*	For setting up 3 linear equations from $\mathbf{r}_1 + \alpha \mathbf{n} = \mathbf{r}_2$ and solving for α
	$\Rightarrow \alpha = -\frac{6}{25}$		
	$ \mathbf{n} = \sqrt{150}$	M1 (*dep)	For $ \mathbf{n} $ seen multiplying α
	$\Rightarrow d = \frac{6}{25}\sqrt{150} = \frac{6}{5}\sqrt{6} \approx 2.94$	A1	For correct distance AEF
		7	

4727

Mark Scheme

2	(i)	$ar = r^5 a \implies r ar = r^6 a$	M1		Pre-multiply $ar = r^5 a$ by r
		$r^6 = e \implies r a r = a$	A1	2	Use $r^6 = e$ and obtain answer AG
	(ii)	METHOD 1			
		For $n = 1$, $r a r = a$ OR For $n = 0$, $r^0 a r^0 = a$	B1		For stating true for $n = 1$ <i>OR</i> for $n = 0$
		Assume $r^k a r^k = a$			
		<i>EITHER</i> Assumption $\Rightarrow r^{k+1}ar^{k+1} = rar = a$	M1		For attempt to prove true for $k + 1$
		$OR \ r^{k+1}ar^{k+1} = r.r^{k}ar^{k}.r = rar = a$			
		$OR \ r^{k+1}ar^{k+1} = r^k .rar.r^k = r^k ar^k = a$	A1		For obtaining correct form
		Hence true for all $n \in \mathbb{Z}^+$	A1	4	For statement of induction conclusion
		METHOD 2			
		$r^2 a r^2 = r.rar.r = rar = a$, similarly for	M1		For attempt to prove for $n = 2, 3$
		$r^3 a r^3 = a$			
		$r^4ar^4 = r.r^3ar^3.r = rar = a,$	A1		For proving true for $n = 2, 3, 4, 5$
		similarly for $r^5 a r^5 = a$			
		$r^6 a r^6 = e a e = a$	B1		For showing true for $n = 6$
		For $n > 6$, $r^n = r^{n \mod 6}$, hence true for all $n \in \mathbb{Z}^+$	A1		For using <i>n</i> mod 6 and correct conclusion
		METHOD 3			
		$r^n a r^n = r^{n-1} . rar. r^{n-1}$	M1		Starting from <i>n</i> , for attempt to prove true for $n-1$
		$OR \ r^{n}ar^{n} = r^{n} \cdot r^{5}a \cdot r^{n-1} = r^{n+5}ar^{n-1}$			
		$=r^{n-1}ar^{n-1}$	A1		For proving true for $n-1$
		$=r^{n-2}ar^{n-2}=\dots$	A1		For continuation from $n-2$ downwards
		= rar = a	B1		For final use of $rar = a$
					SR can be done in reverse
		METHOD 4			
		$ar = r^5 a \Rightarrow ar^2 = r^5 ar = r^{10}a$ etc.	M1		For attempt to derive $ar^n = r^{5n}a$
		$\Rightarrow a r^n = r^{5n} a$	A1		For correct equation
		$\rightarrow \nu^n \alpha \nu^n - \nu^{6n} \alpha$	B1		SK may be stated without proof
		\rightarrow a a a a a	Δ1		For obtaining $a_1(x^6 - a_1)$ may be implied
		- cu - u			For obtaining $u(r) = e$ may be implied)
			U		

3			Allow $\operatorname{cis} \frac{k}{5} \pi$ and $\operatorname{e}^{\frac{k}{5}\pi i}$ throughout
(i)	$w^2 = \cos\frac{4}{5}\pi + i\sin\frac{4}{5}\pi$	B1	For correct value
	$w^3 = \cos\frac{6}{5}\pi + i\sin\frac{6}{5}\pi$	B1	For correct value
	$w^* = \cos\frac{2}{5}\pi - i\sin\frac{2}{5}\pi$	B1	For <i>w</i> * seen or implied
	$=\cos\frac{8}{5}\pi + i\sin\frac{8}{5}\pi$	B1 4	For correct value
(;;)			SR For exponential form with i missing, award B0 first time, allow others
(11)	$\frac{1}{C}$	B1*	For $1+w$ in approximately correct position
	B^{1+w}	B1 (*dep)	For $AB \approx BC \approx CD$
	$1+w+w^2+w^3$	B1 (*dem)	For <i>BC</i> , <i>CD</i> equally inclined to Im axis
		(*dep) B1 4	For <i>E</i> at the origin
	$-\frac{1}{1+w+w^{2}+w^{3}+w^{4}} = \frac{4}{1-\cdots-w^{4}}$		Allow points joined by arcs, or not joined Labels not essential
(iii)	$z^{5} - 1 = 0 \ OR \ z^{5} + z^{4} + z^{3} + z^{2} + z = 0$	B1 1	For correct equation AEF (in any variable) Allow factorised forms using w exp or trig
		9	
4 (i)	$y = xz \Rightarrow \frac{dy}{dx} = z + x\frac{dz}{dx}$	B1	For correct differentiation of substitution
	$\Rightarrow xz + x^2 \frac{dz}{dx} - xz = x \cos z \Rightarrow x \frac{dz}{dx} = \cos z$	M1 A1	For substituting into DE For DE in variables separable form
	$\Rightarrow \int \sec z dz = \int \frac{1}{x} dx$	M1	For attempt at integration to ln form on LHS
	$\Rightarrow \ln\left(\sec z + \tan z\right) = \ln kx$	A1	For correct integration (k not required here)
	$OR \ln \tan\left(\frac{1}{2}z + \frac{1}{4}\pi\right) = \ln kx$		
	$\Rightarrow \sec\left(\frac{y}{x}\right) + \tan\left(\frac{y}{x}\right) = kx$	A1 6	For correct solution
	$\begin{pmatrix} x \end{pmatrix}$ $\begin{pmatrix} x \end{pmatrix}$		AEF including RHS = $e^{(\ln x)+c}$
	$OR \tan\left(\frac{2}{2x} + \frac{1}{4}\pi\right) = kx$		
(ii)	$(4, \pi) \Longrightarrow \sec \frac{1}{4}\pi + \tan \frac{1}{4}\pi = 4k$	M1	For substituting $(4, \pi)$
	$OR \ \tan\left(\frac{1}{8}\pi + \frac{1}{4}\pi\right) = 4k$		into their solution (with k)
	$\Rightarrow \sec\left(\frac{y}{x}\right) + \tan\left(\frac{y}{x}\right) = \frac{1}{4}\left(1 + \sqrt{2}\right)x$	A1 2	For correct solution AEF Allow decimal equivalent $0.60355 x$
	$OR \ \tan\left(\frac{y}{2x} + \frac{1}{4}\pi\right) = \left(\frac{1}{4}\tan\frac{3}{8}\pi\right)x \ or \ \frac{1}{4}\left(1 + \sqrt{2}\right)x$		Allow $e^{\ln x}$ for x
		8	

5 (i)	$C + iS = 1 + \frac{1}{2}e^{i\theta} + \frac{1}{4}e^{2i\theta} + \frac{1}{8}e^{3i\theta} + \dots$	M1 A1	For using $\cos n\theta + i \sin n\theta = e^{i n\theta}$ at least once for $n \ge 2$ For correct series
	$=\frac{1}{1-\frac{1}{2}e^{i\theta}}=\frac{2}{2-e^{i\theta}}$	M1 A1 4	For using sum of infinite GP For correct expression AG SR For omission of 1st stage award up to M0 A0 M1 A1 OEW
(ii)	$C + \mathrm{i} S = \frac{2\left(2 - \mathrm{e}^{-\mathrm{i}\theta}\right)}{\left(2 - \mathrm{e}^{\mathrm{i}\theta}\right)\left(2 - \mathrm{e}^{-\mathrm{i}\theta}\right)}$	M1	For multiplying top and bottom by complex conjugate
	$=\frac{4-2e^{-i\theta}}{4-2\left(e^{i\theta}+e^{-i\theta}\right)+1}=\frac{4-2\cos\theta+2i\sin\theta}{4-4\cos\theta+1}$	M1	For reverting to $\cos\theta$ and $\sin\theta$ and equating Re <i>OR</i> Im parts
	$\Rightarrow C = \frac{4 - 2\cos\theta}{5 - 4\cos\theta}, S = \frac{2\sin\theta}{5 - 4\cos\theta}$	A1 A1 4	For correct expression for C AG For correct expression for S
		8	
6 (i)	Aux. equation $m^2 + 2m + 17 (= 0)$ $\Rightarrow m = -1 \pm 4i$	M1 A1	For attempting to solve correct auxiliary equation For correct roots
	$CF(y =) e^{-x} (A\cos 4x + B\sin 4x)$	A1	For correct CF (allow $A \frac{\cos}{\sin}(4x + \varepsilon)$)
	PI $(y=) px+q \Rightarrow 2p+17(px+q)=17x+36$	M1	(trig terms required, not $e^{\pm 4ix}$) f.t. from their <i>m</i> with 2 arbitrary constants For stating and substituting PI of correct form
	$\Rightarrow p=1$	A1	For correct value of <i>p</i>
	and $q = 2$	AI	For correct value of q
	GS $y = e^{-x} \left(A \cos 4x + B \sin 4x \right) + x + 2$	B1√ 7	Por GS. 1.t. from their CF+PI with 2 arbitrary constants in CF and none in PI. Requires $y = 1$.
(ii)	$x \gg 0 \Rightarrow e^{-x} \rightarrow 0 \ OR \ very \ small$ $\Rightarrow y = x + 2 \ approximately$	B1 B1√ 2	For correct statement. Allow graph For correct equation Allow \approx , \rightarrow and in words Allow relevant f.t. from linear part of GS

7	(i)	$(1, 3, 5)$ and $(5, 2, 5) \Rightarrow \pm [4, -1, 0]$ in Π	M1		For finding a vector in Π
		$n = [2 = 2 \ 3] \times [4 = 1 \ 0] = k[1 \ 4 \ 2]$	M1		For finding vector product of
		$\mathbf{n} = [2, 2, 5] \land [4, 1, 0] = \kappa [1, 4, 2]$	A 1		direction vectors of l and a line in Π
		$\rightarrow \mathbf{r} \begin{bmatrix} 1 & 4 & 2 \end{bmatrix} = 23$	AI	4	For correct n
	(ii)	MFTHOD 1	AI	4	For correct equation. Allow multiples
	(11)	Perpendicular to Π through $(-7, -3, 0)$ meets Π	M1		For using perpendicular from point on l to Π
		where $(-7+k) + 4(-3+4k) + 2(2k) = 23$	M1		For substituting parametric line coords
		$\Rightarrow k = 2 \Rightarrow d = 2\sqrt{1^2 + 4^2 + 2^2} = 2\sqrt{21} \approx 9.165$	M1	4	For normalising the n used in this part
		METHOD 2	AI	4	For correct distance AEF
		$\Pi \text{ is } x + 4y + 2z = 23$	M1		For attempt to use formula for perpendicular distance
		$\Rightarrow d = \frac{\left (-7) + 4(-3) + 2(0) - 23\right }{\sqrt{2} - 2} = 2\sqrt{21} \approx 9.165$	M1		For substituting a point on <i>l</i> into plane equation
		$\sqrt{1^2 + 4^2 + 2^2}$	M1		For normalising the n used in this part
			A1		For correct distance AEF
		METHOD 3			
		$\mathbf{m} = [1, 3, 5] - [-7, -3, 0] = (\pm)[8, 6, 5]$	M1		For finding a vector from l to Π
		$OR = [5, 2, 5] - [-7, -3, 0] = (\pm)[12, 5, 5]$			
		$\Rightarrow d = \frac{\mathbf{m} \cdot [1, 4, 2]}{\mathbf{m} \cdot [1, 4, 2]} = \frac{42}{\mathbf{m}} = 2\sqrt{21} \approx 9.165$	M1		For finding m .n
		$\sqrt{1^2 + 4^2 + 2^2}$ $\sqrt{21}$	M1		For normalising the n used in this part
		METHOD 4	AI		As Method 1 using parametric form of Π
		[-7, -3, 0] + k[1, 4, 2] = [1, 3, 5] + s[2, -2, 3] + t[4, -1]	,0] M	1	For using perpendicular from point on l to Π
					Award mark for $k\mathbf{n}$ used
		$ \begin{array}{ccc} k - 2s - 4t &= 8\\ 4k + 2s + t &= 6\\ 2k - 3s &= 5 \end{array} \} \implies k = 2 \left(s = -\frac{1}{3}, \ t = -\frac{4}{3}\right) $	M1		For setting up and solving 3 equations
		$\Rightarrow d = 2\sqrt{1^2 + 4^2 + 2^2} = 2\sqrt{21} \approx 9.165$	M1 A1		For normalising the n used in this part For correct distance AEF
		METHOD 5			
		$d_1 = \frac{23}{\sqrt{1^2 + 4^2 + 2^2}} = \frac{23}{\sqrt{21}}$	M1		For attempt to find distance from O to Π <i>OR</i> from O to parallel plane containing l
		$d_2 = \frac{[-7, -3, 0] \cdot [1, 4, 2]}{\sqrt{1^2 + 4^2 + 2^2}} = \frac{-19}{\sqrt{21}}$	M1		For normalising the n used in this part
		$\Rightarrow d = d = 23 - (-19) = 2\sqrt{21} = 0.165$	M1		For finding $d_1 - d_2$
		$\Rightarrow u_1 - u_2 - u - \frac{1}{\sqrt{21}} - 2\sqrt{21} \approx 9.105$	A1		For correct distance AEF
	(iii)	(-7, -3, 0) + k(1, 4, 2)	M1		State or imply coordinates of a point on the reflected line
		Use $k = 4$	M1		State or imply $2 \times \text{distance from (ii)}$
			D 1		Allow $k = \pm 4$ OR $\pm 4\sqrt{21}$ f.t. from (ii)
		$\mathbf{D} = [2, -2, 3]$	BI	4	For stating correct direction
		$\mathbf{a} = [-3, 13, 0]$ $\mathbf{r} = [-3, 13, 0] + t[2, -2, 2]$	AI	4	For correct point seen in equation $\mathbf{r} = \mathbf{a} + t\mathbf{b}$
		1 - [-3, 13, 0] + i[2, -2, 3]			
			12	2	

4727

Mark Scheme

8	(i)	$\{A, D\} OR \{A, E\} OR \{A, F\}$	B1	1	For stating any one subgroup
	(ii)	A is the identity	B1		For identifying A as the identity
		5 is not a factor of 6	B1	2	For reference to factors of 6
	(•••)	OR elements can be only of order 1, 2, 3, 6			2
	(III)		M1		For finding <i>BE</i> and <i>EB</i> AND using $\omega^3 = 1$
		$BE = \begin{pmatrix} 0 & 1 \\ -D & EB = \begin{pmatrix} 0 & 0 \\ -E & 0 \end{pmatrix} = E$	A1		For correct <i>BE</i> (<i>D</i> or matrix)
		$DL = \begin{pmatrix} 1 & 0 \end{pmatrix}^{-D}$, $LD = \begin{pmatrix} \omega^2 & 0 \end{pmatrix}^{-T}$	A1		For correct <i>EB</i> (<i>F or</i> matrix)
		$(0, 1)$ $(0, \omega)$			
		$D \text{ or } \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, F \text{ or } \begin{bmatrix} 0 \\ 0 \end{bmatrix} \in M$	A1	4	For justifying closure
		\rightarrow closure property satisfied			
	(iv)	$\frac{1}{2}$	M1		For correct method of finding either inverse
	()	$B^{-1} = \frac{1}{1} \begin{bmatrix} \omega^2 & 0 \\ 0 & \omega \end{bmatrix} = C$			$1 \qquad (\omega^2 0)$
			Al		For correct $B^{-1} = C$ Allow $\begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$
		$(1 (2 - 2^2))$			$\left(0, \pi^2\right)$
		$E^{-1} = \frac{1}{-1} \begin{vmatrix} 0 & -\omega \\ -\omega & 0 \end{vmatrix} = E$	A1	3	For correct $E^{-1} = E$ Allow $\begin{bmatrix} 0 & \omega \\ \omega & 0 \end{bmatrix}$
	(v)	METHOD 1			
	(')	<i>M</i> is not commutative	B1		For justification of <i>M</i> being not
		e.g. from $BE \neq EB$ in part (iii)			commutative
		N is commutative (as \times mod 9 is commutative)	B1		For statement that N is commutative
		\Rightarrow M and N not isomorphic	B1#	3	For correct conclusion
		METHOD 2 Elements of <i>M</i> have orders 1 3 3 2 2 2	B1*		For all orders of one group correct
		Elements of N have orders $1, 6, 2, 2, 3, 6$	B1		For sufficient orders of the other group
		Different enders OD self income alements	(*de	p)	correct
		\rightarrow M and N not isomorphic	B1#		For correct conclusion
					SR Award up to B1 B1 B1 if the self-
					identified for the groups to be non-
					isomorphic
		METHOD 3			
		<i>M</i> has no generator	B1		For all orders of <i>M</i> shown correctly
		since there is no element of order 6 N has 2 OR 5 as a generator	R1		For stating that N has generator 2 OR 5
		\rightarrow M and N not isomorphic	B1#		For correct conclusion
		METHOD 4	DIII		
		$M \mid A \mid B \mid C \mid D \mid E \mid F$			
		$\frac{A}{A} \stackrel{A}{B} \stackrel{B}{C} \stackrel{C}{D} \stackrel{D}{E} \stackrel{F}{F}$			
		B B C A F D E			
		C C A B E F D	B1*		For stating correctly all 6 squared elements
		D D E F A B C			of one group
		E = E = F = D = C = A = B			
		$\begin{array}{c} P & P \\ \hline P & D \\ \hline$			
		$\frac{1}{1}$ $\frac{1}{2}$ $\frac{2}{4}$ $\frac{4}{8}$ $\frac{7}{5}$ $\frac{5}{5}$			
		2 2 4 8 7 5 1			
		4 4 8 7 5 1 2	B1		For stating correctly sufficient squared
		8 8 7 5 1 2 4	(*de	p)	elements of the other group
		7 7 5 1 2 4 8			
		$3 \mid 3 \mid 2 \mid 4 \mid 8 \mid$ $\rightarrow M \text{ and } N \text{ not isomorphic}$	D 1#		For correct conclusion
		$\rightarrow M$ and N not isomorphic	D1#		# In all Matheds, the last D1 is dependent on
					π in an ineurous, the last B1 is dependent of at least one preceding B1
			13		